
‘!’.1

Knowledge Acquisition for the Onboard Planner of an Autonomous
Spacecraft

Ben Smith Krmna Rajan Nicola Muscettola
Jet Propulsion Laboratory NASA Ames Research Center NASA Ames Research Center

California Institute of Technology Mail Stop 269-2 Mail Stop 269-2
4800 Oak Grove Drive M/S 525-3660 Moffett Field, CA 94035 Moffett Field, CA 94035

Pasadena, CA 91109-8099 kanna@ptolemy.arc. nasa.gov mus@ptolemy.arc. naffa.gov
E3en.D.Smith@jpl. nasa.gov

Abstract

Deep Space One (DS1) will be the first sp&ecraft to
be controlled by an autonomous closed loop system
potentially capable of carrying out a complete mis-
sion with minimal commanding from Earth. A major
component of the autonomous flight software is an on-
board planner/scheduler. Based on generative phm-
ning and temporal reasoning technologies, the plan-
ner/scheduler transforms abstract goals into detailed
tasks to be executed within resource and time limits.
This paper discusses the knowledge acquisition issues
involved in transitioning thk novel technology into
spacecraft flight soft ware, developing the planner in
the context of a large software project and completing
the work under a compressed development schedule.
Our experience shows that the planning framework
used is adequate to address the challenges of DS1 and
future autonomous spacecraft systems, and it points
to a series of open technological challenges in develop
ing methodologies and tools for knowledge acquisi t.ion
and validation,

Introduction

The future of the space program calls for ambi-
tious missions of exploration and scientific discovery.
Searching for life on Mars, Europa and elsewhere in
the solar system and beyond will require the solu-

tion of several challenging technical and organizational
problems. A central one is the implementation of in-
creasingly capable and autonomous control systems
to ensure both mission accomplishment and mission
safety (Williams & Nayak Fall 1996; Hayes-Roth 1995;
lambe et al. 1995). Without these systems missions
will have to be run with the current, traditional ap
preach. This relies on frequent communication with
Earth and teams of human experts guiding step by step
a mission through its tasks and analyzing and react-
ing to the occurrence of malfunctions. The cost and
logistics difficulties of this approach, however, are so
high that it cannot be reasonably carried over to the
expected growth of missions and mission capabilities.
Autonomy technology is an answer to these problems.

The Remote Agent (RA) (Pen et al. 1996a;
1997) will be the first artificial intelligence-based WI-

tonomy architecture to reside in the flight processor of
a spacecraft and control it for 6 days without ground
intervention. The mission on which RA will fly is
Deep Space One (DS1), the first decpspace mission of
NASA’s New Millennium Project. RA achieves its high
level of autonomy by using an architecture with three
components: an integrated planning and scheduling
system (PS) that generates sequences of actions (plans)
from high-level goals, a intelligent executive (EXEC)
that carries out those actions and can respond to ex-
ecution time anomalies, and a hiodel-baaed Identifica-
tion and Recovery system (MIR) that identifies faults
and suggests repair strategies. Each module covers a
different function in the architecture and uses a differ-
ent computational approach. one characteristic how-
ever is common to all of them: the reliance on models
of the domain that are largely independent from the
task to be fulfilled. These models allow the module to
rely on a much deeper understanding of the structural
characteristics of the domain than possible with clas-
sical rule-based approaches, facilitating model analysis
and model reuse.

This paper discusses the knowledge acquisition pro-
cess used for models and heuristics of the planning and
scheduling system (PS) of DS1. We started the process
with an approach to planning knowledge representa-
tion (hluscettola 1994) that had been demonstrated in
a rapid-prototype effort (Pen et al. 1996a). With DS1
we had to face additional challenges due to having to
develop PS in the context of the development of the full
flight software, to the additional complexity of the do-
main, to the compressed schedule for development and
to the risk-management requirements. Also, architec-
tural solutions internal to RA had to be enhanced due
both to the increase in capabilities that were needed
to control a real spacecraft and to the need to provide
sounder software engineering approaches. We will de-
scribe how the knowledge acquisition process was car-

———

b

Pkand.QAdulw T.-M”

s

Snd Uxdalti”
I

4

IPImnanad

Figure 1: RA architecture Figure2: Planner/Scheduler Architecture

ried out and the strengths and weaknesses we found in
our current approach.

Section deals with the Remote Agent software ar-
chitecture highlighting the details of the planner and
it’s plan representation. Section deals with issues in
knowledge acquisition including references to the spiral
development process, model acquisition and interface
to external experts. Section deals with the open is-
sues as a result of the development process including
the need for validation and debugging tools. Conclu-
sions appear in Section .

The Remote Agent and Planner

Architectures

The RA architecture consists of four distinct comp~
nents (Figure 1), the Planner/Scheduler, the Mission
Manager (Muscettola et al. 1997), the Smart lhecutive
(EXEC) (Pen et al. 1996b) and the Mode ldentijica-
tion and Recovery (MIR) system (Williams & Nayak
1996; Fall 1996) .

The execution of plans by the EXEC is achieved by
interaction with a hlode Identification system and a
lower level real time monitoring and control compo-
nent. MIR provides the EXEC with a level of abstrac-
tion to reason about the state of the various devices it
commands. The monitoring layer takes the raw sensor
data and discretizes it to the level of abstraction needed
by MIR. Finally, the control and real-time system layer
takes commands from the executive and provides the
actual control of the low level state of the spacecraft.
It is responsible for providing the low level sensor
data stream to the monitors. Details of the Remote
Agent architecture can be found in (Pen et al. 1996a;
1997).

The planner/scheduler (PS) generates a detailed
plan of action from a handful of high-level goals, based
on knowledge of the spacecraft contained in a domain
model. The model describes the set of actions, how
goals decompose into actions, the constraints among
actions, and resource utilization by the actions. The

planning engine searches the space of possible plans for
one that satisfies the constraints and achievea the goals.
The action definitions determine the space of plans.
The constraints determine which of these plans are le-
gal, and heavily prune the search space. The heuris-
tics guide the search in order to increase the number
of plans that can be found within the time allocated
for planning.

Figure 2 describes the overall view of the Re-
mote Agent Planner/Scheduler. The Mission Manager
(MM) contains the long term mission plan with goals
for the entire mission. Ground operators can interact
with the MM to modify the plan by adding, remov-
ing or editing goals in the mission plan. The MM also
provides the EXEC with an interface to the Planner.
When the EXEC requests a new plan, MM selects a
new set of goals from the mission profile, based on in-
ternal way points. It combines this with the initial
state provided by the EXEC and generatea a partial
plan for the planner. When the EXEC has completed
execution of this plan the cycle is completed when it
sends a new request to the MM for the next planning
horizon. For the RA experiment the plan horizon will
consist of two segments each three days lcmg.

Knowledge Representation of the Planner

The knowledge representation of the planner is dis-
tributed among the domain models, the planner heuris-
tics, the mission profile and the plan experts. The
domain models encode the behavioral and operational
constraints imposed on the spacecraft by the mission
and the hardware. The heuristics guide the planner
search to decrease the computational resources needed
to find a plan and to increase plan quality. The mis-
sion profile encodes the long term goals and mission
requirements as determined by the ground controllers
and mission designers, and resides in the Mission Man-
agers temporal database. Fina}ly the plan experts are
special-purpose software modules, written and main-
tained by other teams, with which the planner inter-

acts to obtain knowledge that cannot be easily encocled
in the plan model. (Define-Compatibility

;; compats on SEP-Thrusthg
Model Representation. The PS uses a hybrid (SEP-Thrustiw ?headirw?level ?duration)
planning/scheduling representation that models con- :compatibilit~-spec -
tinuous processes on parallel timelines to describe ac- (AND (equal (DELTA HULTIPLE (Power)

tions, states and resource allocations. PS provides also (+ 2416 Used)))

for temporal and parametric flexibility and uses plan-
(contained-by

(Constant-Point ing ?heading))
ning experts.

Plans consist of several parallel timeiinesj each of
which consists of a sequence of tokens. A timeline de-
scribes the evolution of a spacecraft state over time,
and the tokens describe those states. For example,
consider one timeline that describes the main engine.
lfthe planis to start in standby, fire up the engine,
and return to standby, the timeline would have one to-
ken for each ofthose processes. Each token has astart
time, and end time, and a duration. Each token can
have zero or more arguments (e.g., the thrust levelat
which to fire the engine).

(met-by (SEPJ$tandbj)) -
(meete (SEPJ3tandby))))

(Define-Compatibility
;; Transitional Pointing
(Transitional-Pointing ?from ?to ?legal)
:parameter-functions

(?-duration- <-
APE-Slew-Duration(?from ?to ?-start-time-))

(?-legal- <-
APEJ31ev-Legality(?from ?to ?-start-time-))

:compatibility-spec
(AND (met-by (Constant-Pointing ?from))

(meets (Constant-Pointing ?to))))

The plan model consists of definitions for all the (Define-Compatibility

timelines, definitions for all the tokens that can ap
;; Constant Pointing
(Conetant-Pointing ?target)

pear on those timelines, and a set of temporal con- :compatibility-epec
straints that must hold among the tokens in a valid (MD (met-by (Transitional-Pointing
plan. The planner model is described in adomain de- ● ?target LEGAL))

scription language (DDL), and is represented M part (meets (Conetant-Pointing

of the planner’s database also called the Plan DI1. ?target ● LEGAL))))

Temporal constraints are specified in DDLby com- Figure 3: Anexample ofacornpatibilit yconstraint in
potibilities. A compatibility consists of a mastert oken the planner model.
and a boolean expression of temporal relations that
must hold between the rnastertokenand target tokens.CO@ati
An example isshown in Figure3.

Transition Trasss&iOn cOsLsrsaslf
Pointing Poinring(A/B) POinfLng@,Q PObtling(C)

The first compatibility says that the master token, ----
Consrant_Poinling(B)

SEP-THRUSTING (when the Solar Electric propukion~ -w -- I I
------ -.

engine is producing thrust), must be imrnediatelypre- ‘.... ”(
ceded and followed bya standby token, temporally con- mef_by

metls

tained by a constant pointing token, and requires 2416
Watts of power. Constant pointing implies that the~ SEP.Sfandby I Sl?P-Thrust(BJOO) I SEP_Sfandby I

spacecraft is in a steady state aiming its camera to-
wards a fixed target in space. Transitional pointings
turn the spacecraft. The SEP standby state indicates ~------- -- ------ -----
that theengine is not thrusting but has not been corn -l ---------
pletely shut off. A plan fragrnentbase donthese corn-
patibilities is shown in Figure4. Figure4: Plan Fragment

Heuristics. IIeuristics guide every choice point of
the planners search. On each iteration of the search, Method Connect
the planner chooses an unresolved compatibilitycon- ; ; connect only.
straint and a way to resolve it: by constraining an ;; defer and add are disallowed.
existing token to satisfy the constraint, adding a new master { Transitional-Pointing; }
token that satisfies it, or assuming that it will be satis- target < Constant-Pointing; 3
fiedbyaome token inthe nexthorizon. There areother
decisions as well, such as grounding under-constrained Figure5: Cycle Avoidance Heuristics
argument values.

For example, the heuristic in Figure 5 prevents back-
tracking due to cycling. The attitude timeline alter-
nates between constant pointing tokens and transi-
tional pointing tokens. Once a constant pointing token
is added, it has compatibilitiea that could add tran-
sitional pointing tokens, which ,can in turn add con-
stant pointing tokens add infinitum. The last heuristic
breaks the cycle by saying that a transitional point-
ing token can connect to an existing constant pointing
token, but can never add one,

Mission Profile. The goals for the entire mission
are stored in an on-board file called the mission pr-ojde,
which is managed by the Mission Manager. The profile
captures mission operations knowledge, such aa when
the communications passes are scheduled, how much
fuel is allocated for each segment of the mission, when
various mission phases start and stop, and so on. The
profile also serves aa the primary interface with the
ground controllers. The ground team commands the
spacecraft at a high level by changing or adding goals
to the profile.

Plan Experts. A large software project like the
DS1, requires the contribution of several teams with
specialized knowledge. Planning Experts are programs
developed and maintained by other teams. They coor-
dinate with the planner but which are not strictly part
of its domain representation.

A prime example is the Attitude control Planning
Expert (APE), which answers queries about how long
the turn will take and whether a given turn violates
pointing constraints (e.g., will the turn expose the cam-
era to a damaging bright radiation source). How viola-
tion constraints are calculated is completely opaque to
the planner. As a result, separating the plan experts
from the planning model simplifies the knowledge ac-
quisition and software maintenance process. Quite of-
ten, due to the specificity of these modules, the code
is also reusable across missions. For instance, much
of the code for attitude constraint violation in APE
came from NASA/ESA’s Cassini mission (G. M.13rown,
D.Bernard, & R. Rasmussen 1995).

There are two kinds of plan experts. The first kind
answers questions about constraints. APE is of this va-
riety. The second kind of plan expert generates goals
for the planner to achieve. These on-board goal gen-
erators allow the spacecraft to make autonomous deci-
sions, within certain parameters, based on local infor-
mation. The prime example on DS1 is the on-board
navigator, which provides goals on trajectory related
maneuvers and goals for images of nearby celestial bod-
ies from which NAV can determine the spacecraft po-
sition.

The planner asks the goal generators for goals when
the planner is ready for them. The goal generators
have no visibility into the plan, other than whatever in-
formation provided in the request. When the goals are
returned, the planner decides how they will be achieved
in the plan, or whether they are achieved at all. If the
plan is over-constrained, goals can be rejected based
on a global prioritization scheme.

The Knowledge Acquisition Process

Traditionally flight software for a spacecraft consists
only of low level device drivers, attitude control sys-
tem and simple sequence execution capabilities. Com-
manding done from ground allows the operational and
mission constraints to be designed and implemented
at a later time, sometimes even after launch. With
on-board autonomy, the design process must take a
more comprehensive view to the full mission life cycle
including from the uer~ beginning the modes, opera-
tions and expected behaviors of the spacecraft in the
domain moclels. To accomplish this we used a spiral
development model (130ehm 1988).

In the following sections we discuss the knowledge
acquisition process and methodology for the planner
and the resulting problems and issues they raised.

The Spiral Development Process

In spiral development (Boehm 1988), functionality is
added incrementally in distinct software releases. This
allows base functionality to be understood and de-
veloped before moving to more complex functionality,
Processes and standards are also refined in each spi-
ral. At the end of each development cycle, project
teams meet to discuss the obstacles they encountered
and the lessons they learned. The DS1 spiral process
is discussed further in (Krasner & Bernard 1997).

At the beginning of each spiral, the mission engi-
neers created a baseline scenario that would exercise
the new functionality for that spiral while still requir-
ing the old functionality. The hardware management
team (HWMT) then arranged several days of knowl-
edge acquisition meetings with the hardware develop
ers, who would detail the software requirements for
their hardware to work correctly.

Each of the modeling and software development
teams sent representatives to these meetings. The
hardware developers presented the baseline behavior
for the upcoming spiral, and the modelers asked qutx+
tions to elicit further details. Since each component of
the RA models the hardware at a different level, having
representatives from each team was particularly help
ful in identifying interaction issues across the different
levels.

Subsystem
Mission events
Power
Ion Propulsion
Attitude control
Communications
MICAS
Beacon experiment
RCS system
Navigation
Planner/scheduler
Total

R1
-ii-

0
1

3
‘o
1
0
1
3
1

10

R2
1
0
5
4
1
1
0
1
3
1

m

R3
3
2
5
4
2
6
2
3
4
1

32

Table 1: Number of timelinea changed in the model for
each development release.

Subsystem
Mission events
Power
Ion Propulsion
Attitude control
Communications
MICAS
Beacon experiment
RCS system
Navigation
Planner/scheduler
Total

-Ri-
0
0
3
2
0
3
0
0
4
2

%

R2
2
0

11
11
3
3
0
0
3
2

36

——
R3

4
0

14
16
7

20
4
2
7
2

76

Table 3: Number of compatibilities changed in the
model for each development release.

The DS1 Spiral releases were designated R1 through
R3. To give the reader the scope of development that
took place, we show the evolution of the planner model
sizes for each revision in Tables 1, 2 and 3.

From the PS perspective each revision in the spiral
development model involved successively sophisticated
constraint modeling of the spacecraft. In the first re-
vision the model only dealt with simple turns and pic-
ture taking for navigation images; more complex issues
such as power, thermal modeling were ignored. In the
next revision the model included the modeling the S13P
engines and obtaining more detailed trajectory infor-
mation from the navigation expert. The third spiral
release added power management, advanced turns, and
comet fly-by related activities.

In each revision of the Spiral development approxi-
mate y eight weeks were needed for knowledge capture
and another eight weeks for model development and
tuning of the planner search.

Model Acquisition

Model acquisition in each cycle started with the cog-
nizant system engineer specifying the baseline func-
tionality to be covered, layered on top of designs of sub

systems already implemented. Each team then devel-
oped a specification called a Problem Statement which
described how that functionality would be achieved.
For the planner, this described changes to the planning
model and engine and described changes to interfaces
with the EXEC and plan experts. Teams with inter-
faces with the planner (especially the EXEC) would
comment and propose design changes and any addi-
tional requirements. After a few iterations of this pro
cess, the modeler would update the Token Dictionary.
The token dictionary details the syntax and seman-
tics of each token type on all the timelinea and forms
the primary document for all negotiated informal in-
terfaces with the EXEC.

We used an informal elicitation methodology to ac-
quire the models described in the problem statements.
The elicitation began with a standard list of ques-
tions about how the subsystem operated and what
constraints or interactions it had with other subsys-
tems. These would then lead to more detailed ques-
tions. The captured knowledge was compiled in a semi-
formal document and approved by the engineers in a

separate session. There was no formal methodology
to ensure coverage other than the constraints of the
baseline scenario. Nonetheless, this was adequate to
build the plan models and successfully complete the
scenarios for each spiral release. In retrospect, an acqu-
isition methodology that resulted in a formal specifica-
tion with guaranteed coverage would have been useful
for rigorously validating the model (see Section).

Issues in Domain Modeling. In modeling for the
DS1 mission, we discovered that a relatively large num-
ber of modeling tasks were easy to do, given the syntax
and semantics of DDL. In a couple of cases we had to
introduce auxiliary timelines to support the planner’s
reasoning process.

For instance it was necessary to schedule the cor-
rect amount of SEP thrust within a planning horizon.

Simply put, this would require computing the duration
of each SEP thrust token and performing a summa-
tion over the planning horizon. To do so however, a
somewhat circular approach was needed by defining
a new timeline which would use variable codesigna-
tion and propagate accumulated thrust values based on
temporal durations of the SEP thrust tokens; some

thing not altogether intuitive. Figure 6 illustrates this
situation with the Max Thrust duration specifying the

thrust duration needed in the horizon; SEP thrust
tokens actually performing the thrusting action and

Subsystem ‘–

Mission events
Power
Ion Propulsion
Attitude control
Communications
MICAS
Beacon experiment
RCS system
Navigation
Planner/scheduler

——
RI-—

“rot.—
0
0
1
4
0
3
0
1
6
2

—.—
R——

Add
1

11
4
3
5

Mod

1

2

m Tot
1
0

12
8
3
8
0
1

6
2

R3
Add

5
3
1
6
2

14
4
4
3

Mod

3
2
2

1

Del

1

Total ‘
——

-_@_l__i I ~ l—l—

Tot
6
3

13
14
5

22
4
5
9
2

69

Table 2: Number of token modifications to the model for each development release.

Actumnidd AIxumukIf8J Accumnlalcd

Thnu(o,40) Thnu@?gEO) Thlwq80Jiw)

Figure 6: A plan fragment implementing thrust accu-
mulation within a plan horizon

Accumulated thrust tokens showing a running count
of the thrust.

As mentioned earlier, with each iteration of the de-
velopment cycle the planner models were made con-
sistently more realistic. Knowledge acquisition from
each spiral cycle effectively ended up affecting the plan-
ner’s domain model and it’s heuristics. While syntac-
tic modifications and its semantic interpretation were
the primary drivers of model development (especially if
interface requirements at the token level were to be ne-
gotiated with the EXEC (see Section)) we discovered
that significant development time was spent aligning
the heuristics with the model changes so that planner
convergence was possible.
Heuristics. Because of the tight coupling of the d~
main model to the heuristics, changes to the model
almost always require corresponding changes to the
heuristics. This makes it dit%cult to introduce incre-
mental changes to the model. Normally, a family of
timelines corresponding to a new device or capability
can be added with minimal impact on other timelines.
Most of the constraints are among the timelines in the
family, with a handful of constraints to external re-

sources such as power or spacecraft attitude. However,
the new timelines change the optimal search strategy,
and this requires the heuristics to be re-tuned.

Unmodeled Activities

Sometimes the ground controllers want tc) execute un-
usual maneuvers that are not modeled the planner. For
example, they may want to execute a high-speed turn
(normally disallowed) in order to jar loose a stuck solar
panel. The model must provide a way for the ground
controllers to execute contingency maneuvers such as
this without uploading a new model. Changing the
model maybe fine for permanent patches, but the time
and cost needed to develop and test the patch makea
them impractical for one-time emergency maneuvers.

In support of this requirement the mc)del providea
a special activity token that can stand in for any
activity the ground wants to execute but is not oth-
erwise supported by the planning model. The ground
controllers insert the token where they want it in the
mission profile. It can be scheduled for a specific time,
or scheduled relative to other events. ‘I’he activities
performed by the token are specified in a file of time-
tagged low-level commands that the EXEC executes
at the beginning of the token.

Since the actions executed in the special activity to
ken are not modeled by the planner, it is possible that
they could conflict with planned activities. For exam-
ple, the plan could be trying to hold the spacecraft
still in order to take an image while the special activ-
ity token is executing a high speed turn. To avoid such
conflicts, constraints can be specified between the spe-
cial activity token and other tokens in the plan. In this
case, attitude dependent activities would be disallowed
while the special activity token was active. These con-
straints can be specified in the mission profile.

Interfaces

Theinterfacea between theplanner andother parts of
the flight software impact the knowledge acquisition
and representation. The planner has two main inter-

faces: interface with plan experts, and interfaces with
the Smart Executive component’ of the RA.

Plan Expert Interfaces. Negotiating the plan ex-
pert interfaces was among the easiest of the knowledge
acquisition tasks. This is largely due to the opaque
neas of the plan experts to the planner and vice versa.
The bulk of the knowledge acquisition was in the very
first meeting, where the focus was understanding how
the plan expert worked and explaining planner con-
cepts to the plan expert developers. In the case of
APE, the planning team needed to understand how to
specify a turn, and what information was needed for
APE to compute a turn. The details of how turns are
computed were irrelevant.

Once this initial knowledge acquisition was com-
pleted, subsequent interface negotiations were com-
pleted in a matter of hours, usually by phone or email.
The interfaces were formally defined as C structures
that specified the information passing from the plan-
ner to the plan expert and back. These were captured
in an interface control document, and in an executable
interface specification language.

In some cases, the planner used assumptions about
the inner workings of the plan expert to improve ef-
ficiency. For example, the legality and duration of a
turn changes slowly and continuously over time. This
allows a turn to be moved a couple hours ahead or back
in the plan as needed without affecting its duration or
legality. The planner model and heuristics exploited
this knowledge to simplify the design and speed up the
search. Assumptions of this sort were rare, and cap
tured explicitly in the interface control documents.

EXEC Interfaces. The interfaces between the plan-
ner and the Smart Executive (EXEC) are embodied by
the timeline and token definitions included in the plan-
ner’s model.

In order for the EXEC to execute plans, it must
know what tokens can appear in the plan and how to
expand those tokens into detailed commands to the
real-time flight software. This creates a very strong
coupling between EXEC and the planner. All of the
timelines, tokens, and their semantics were negoti-
ated at the beginning of each spiral before any im-
plementation took place. However, if the need for
another token was discovered during development, or
some token needed another argument, or the seman-
tics were wrong, then the EXEC and PS had to change
their implementations accordingly. Because the tokens

are such a major part of the model implementation,
changes of this sort occurred in every development spi-
ral despite strong efforts to prevent them.

Several solutions to this interface issue were consid-
ered for DS1. One successful approach was to use in-
formation hiding to create private token arguments.
Additional arguments are often needed tc) hold values
derived from other arguments, or to propagate valuea
from other tokens. The need for these arguments of-
ten goes unnoticed until development begins in earnest.
Private arguments are seen by the planner, but are do
not appear in the plan. This allowed modelers to add
arguments for bookkeeping and propagation purposes
without impacting the EXEC. This capability was in-
troduced at the end of the R2 spiral, and used with
great success in R3.

Interface Management Process. To ensure dis-
connects were kept to a minimum, another requirement
added by the project during the design phase of each
revision, was the development of Problem Statements,
with details of each modules’ design, interfaces and as-
sumptions for that revision cycle. The planner in ad-
dition also had a token dictionary with the negotiated
token level interfaces with the EXEC. With the EXEC
with which the planner representation was tightly cou-

pled, any agreements and assumptions in the planner’s
model were accurately document and easily accessible
via a world wide web (WWW) interface to the dic-
tionary and disconnects caught early on. In order to
avoid disconnects with respect to the hardware specifi-
cations, especially as hardware delivery quantified the
performance, the 11WMT was the central point of con-
tact for disseminating information.

The project also made sure that after the interface
parties and the design phase for each cycle, but Zwjoti
the various teams started actually developing code, a
concept review would take place. Each team would
publish a short document detailing their design choices
and the assumptions made, especially towards generat-
ing the scenario in the current cycle and the interface
requirements. Any disconnects found would require
the project to follow through with the team in question
to ensure the new design actually covered the complete
scenario.

Distributed Development

Because of geographically distributed teams, design
documents and interface agreements were exchanged
primarily via a WWW interface with autoposting fea-
tures as mentioned in (Compton et al. 1997). The use
of the Internet was decisive in successfully collaborat-
ing over remote sites especially when exchanging de-
vice level knowledge. For instance, the HWMT would

be able to post power budget allocations over different
devices which could be abstracted, parsed and built
into a table for lookup during model generation time.
This would ensure that the planner models were con-
sistent in their power budgets with those of the system
engineering and actually viable, for generating robust
plans.

Additionally, for short design and concept reviews, a
“meet-me” telephonic system was in place with people
calling into a central number while accessing the web
and viewing the same document simultaneously. This
greatly helped in cutting down the time, effort and
expense of commuting to a central site. Note also that
a revision control system (et .al 1996) was in place for
all the source code.

Open Issues

The DS1 project presented several challenges in knowl-
edge acquisition, representation, and validation. The
DS1 planner proved capable of addressing these issues,
at least to the extent needed to satisfy the require-
ments of DS1. However, there are a number of issues
that must be resolved before this technology can be
used on a risk-intolerant science mission by spacecraft
engineers with minimal support from the planner de-
velopment team.

Acquiring Heuristics is Difficult

Good heuristics are needed to make the planner search
cornputationally tractable. Heuristics tell the planner
what decisions are most likely to be best at each choice
point in the planner search algorithm, thereby reduc-
ing the search. Developing a good set of heuristics
for the DS1 planner is currently very difficult, both
because it requires an intimate knowledge of how the
planner search algorithm interacts with the model, and
because the planner requires exceptionally good heuris-
tics to achieve computational tractability. The DS1
model developers had this experience and so were able
to develop good heuristics, but these obstacles must be
overcome before spacecraft engineers can be expected
to develop heuristics on their own.

One solution is to provide tools that derive heuris-
tics automatically. Such tools have been discussed in
the machine learning and planning literature. Two of
the more promising approaches are to derive heuris-
tics automatically through a static analysis of the plan
model (Etzioni 1993) or to learn them by watching the
behavior of the planner over several runs on a given
model (Minton 1996). Unfortunately, the DS1 plan-
ner requires exceptionally good heuristics to achieve
tractability, and these methods generally do not pro-
duce heuristics of that caliber, The sensitivity of the

planner to the heuristic must be reduced before auto-
matic heuristic acquisition can be feasible,

Development and Debugging Tools are
Needed

Modeling could be made considerably easier with even
a few simple tools. Although there was insufficient
time to develop them for DS1, our experience with
developing and debugging models suggested a number
of desirable features. Developing tools along these lines
is one of our near term goals.

Plan Visualization Tools. One problem with the
current system is that it is very difhcult to under-
stand what the planner is doing, despite copious out-
put. This makea it difficult to isolate the decisions
that lead to bugs in the plan, or prevent the planner
from finding any plan at all. A visualization tool would
help modelers to track the planners behavior, as well
as making it easier for new users to understand how
the planner works.

Deactivating Timelines. When debugging, the
modeler often suspects the bug is within a small fam-
ily of timelines. But as the model gets more complex,
it becomes difficult to focus on the behavior of those
timelines. A simple way to address this problem is to
disable irrelevant timelines. The planner ignores the
timelines and all compatibilities associated with them.
This facility is rather easy to add, though there was in-
sufficient time to implement given the compressed DS1
schedule.

Model Visualization Tools. As the model gets
larger, it becomes harder to keep in mind all the con-
straints among the parts of the model. A model vi-
sualization tool that displayed a graphic view of the
model (or a subset) and the constraints would help the
modeler view this information as a whole.

Large Scale Validation of the Remote
Agent Planner

Before any spacecraft is launched, its flight software
must be throughly tested and validated. The same
is true for autonomous flight software. However, the
validation methods used for traditional software are
not generally applicable to autonomous software. New
methods must be developed.

The planner can generate several thousand different
plans, depending on the mission goals, the spacecraft
state, goals generated on-board by plan experts and
variations on the model parameters. To fully validate
the planner, one must be sure that it will generate a
correct plan for every one of those possible situations,
and that the plan can be executed correctly by the

EXEC.
An alternative to generating and testing several

thousand plans is to use formal methods to validate the
models and to verify that the planner produces plans
that are consistent with the model. One approach is
to capture the flight rules and other requirements for-
mally as constraints, and ensure that the model is con-
sistent with all of them, and that no constraints have
been missed. A related possibility is to convert the
models into a human-readable form and have them
approved by cognizant system engineers (domain ex-
perts).

Tools for automatically generating and validating
plans can greatly reduce this cost, One of the tools
we considered for DS1 but did not have time to impl~
ment was a constraint checker that tested whether the
plan satisfied certain correctness constraints. These
include the constraints in the model, plus additional
constraints derived from flight rules and other opera-
tional constraints.

Conclusion

DS1 will be the first deep-space spacecraft under au-
tonomous control. The complexity of this domain
raised a number of important knowledge acquisition
and representation issues, some of which we were able
to address and some of which remain open. Issues were
also raised by the fast-paced spiral development cycle,
the embedding of the planner within the autonomy ar-
chitecture, and the risk-management requirements of
the space flight domain.

These issues are not unique to DS1, and are likely to
occur on other projects that require autonomous con-
trol of a complex environment. As the role of auton-
omy increases in space exploration and other areas, so
will the importance of finding good solutions to these
issues.

Acknowledgments

This paper describes work partially performed at
the Jet Propulsion Laboratory, California Institute of
Technology, under contract from the National Aero-
nautics and Space Administration. This work would
not have been possible without the extraordinary ef-
fort and dedication of the rest of the Remote Agent
Planning Team: Steve Chien, Charles Fry, Sunil M&
ban, Paul Morris, Gregg Rabideau, and David Yan.

References

Boehm, B. 1988. A Spiral Model of Software Devel-
opment and Enhancement. Computer 61-72.

Compton, M.; Stewart, H.; Baya, V.; Alto, M. D.;
K~nefsky, B.; and Vincent, J. 1997. Electronic

collaboration for the New Millenium: lnternet-
based Tools and Techniques for Sharing informa-

tion. In http://ic-www.ax. nasir.gov/ic/projects/n mp-
doc/nmp-doc-prws.pdf.

et.al, P. C. 1996. Concurrent Versions System. In
http://www.loria. fr/ molli/cvs-r’ndez. htnd,

Etzioni, O. 1993. Acquiring Search Control Knowl-
edge via Static Analysis. Artificial Intelligence 62,

G .M.Brown; D.Bernard; and R. Rasmussen. 1995. At-
titude and Articulation Control for the Cassini Space-
craft. a fault tolerance overview. In 14th AIAA/IEEE
Digital Avionics Conference.

Hayes-Roth, B. 1995. An Architecture for Adaptive
Intelligent Systems. Artificial Intelligence 72,

IEEE. 1997. Proceedings of the IEEE Aerqwce Con-
ference, Snowmass, CO.

Krasner, S., and Bernard, D. E. 1997. Integrating
Autonomy Technologies into an Embedded Spacecraft
System—Flight Software System Engineering for New
Millennium. In Proceedings of the IEEE Aerospace
Conference (1997).

Minton, S. 1996. Automatically configuring con-

straint satisfaction programs: A case study. Con-
stmints l(l).

Muscettola, N.; Smith, B.; Fry, C.; Chien, S.; Ra-
jan, K.; Rabideau, G.; and Yan, D. 1997. On-Board
Planning for New Millennium Deep Space One Au-
tonomy. In Proceedings of the IEEE Aerospace Con-
ference (1997)0

Muscettola, N. 1994. HSTS: Integrating planning
and scheduling. In Fox, M., and Zweben, M., eds.,
Intelligent Scheduling. Morgan Kaufmann.

Pen, B.; Bernard, D. E.; Chien, S. A.; Gat, E.;
Muscettola, N.; Nayak, P. P.; Wagner, M. D.; and
Williams, B. C. 1996a. A Remote Agent Prototype
for Spacecraft Autonomy. In Proceedings of the SPIE
Confemmce on Optical Science, Engineering, and In-
strumentation.

Pen, B.; Gat, E.; Keesing, R.; Muscettola, N.; and
Smith, B. 1996b. Plan Execution for Autonomous
Spacecraft. In Pryor, L., cd., Procs. of the AAAI Fall
Symposium on Plan Execution. AAAI Press.

Pen, B.; Bernard, D. E.; Chien, S, A.; Gat, E.;
Muscettola, N.; Nayak, P. P.; Wagner, M. D.; and
Williams, El. C. 1997. An Autonomous Spacecraft
Agent Prototype. In Proceedings of the First inter-
national Conference on Autonomous Agents, ACM
Press.

—

,’

Tambe, M.; Johnson, W. L.; Jones, R. M.; Koss, F.;

Laird, J. E.; Rosenbloom, P. S.; and Schwamb, K.
1995. Intelligent Agents for Interactive Simulation
Environments. AI Magazine 16(1):15-39.

Williams, B. C., and Nayak} P. P. 1996. A model-
based approach to reactive self-configuring systems.
In Pmea. of AAAI-96, 971-978. Cambridge, Mass.:
AAAI Press.

Williams, B. C., and Nayak, P. P. Fall, 1996. Imm~
bile Robots, AI in the New Millennium. Al Magazine.

